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ORIGINAL RESEARCH
HEAD & NECK

Diagnostic Value of Model-Based Iterative Reconstruction
Combined with a Metal Artifact Reduction Algorithm during

CT of the Oral Cavity
Y. Kubo, K. Ito, M. Sone, H. Nagasawa, Y. Onishi, N. Umakoshi, T. Hasegawa, T. Akimoto, and M. Kusumoto

ABSTRACT

BACKGROUND AND PURPOSE: Metal artifacts reduce the quality of CT images and increase the difficulty of interpretation. This
study compared the ability of model-based iterative reconstruction and hybrid iterative reconstruction to improve CT image qual-
ity in patients with metallic dental artifacts when both techniques were combined with a metal artifact reduction algorithm.

MATERIALS AND METHODS: This retrospective clinical study included 40 patients (men, 31; women, 9; mean age, 62.9 6 12.3 years)
with oral and oropharyngeal cancer who had metallic dental fillings or implants and underwent contrast-enhanced ultra-high-resolu-
tion CT of the neck. Axial CT images were reconstructed using hybrid iterative reconstruction and model-based iterative recon-
struction, and the metal artifact reduction algorithm was applied to all images. Finally, hybrid iterative reconstruction þ metal
artifact reduction algorithms and model-based iterative reconstruction þ metal artifact reduction algorithm data were obtained. In
the quantitative analysis, SDs were measured in ROIs over the apex of the tongue (metal artifacts) and nuchal muscle (no metal
artifacts) and were used to calculate the metal artifact indexes. In a qualitative analysis, 3 radiologists blinded to the patients’ con-
ditions assessed the image-quality scores of metal artifact reduction and structural depictions.

RESULTS: Hybrid iterative reconstruction þ metal artifact reduction algorithms and model-based iterative reconstruction þ metal
artifact reduction algorithms yielded significantly different metal artifact indexes of 82.2 and 73.6, respectively (95% CI, 2.6–14.7;
P , .01). The latter algorithms resulted in significant reduction in metal artifacts and significantly improved structural depictions
(P , .01).

CONCLUSIONS: Model-based iterative reconstruction þ metal artifact reduction algorithms significantly reduced the artifacts and
improved the image quality of structural depictions on neck CT images.

ABBREVIATIONS: IR ¼ iterative reconstruction; hybrid-IRþMAR ¼ combination of hybrid iterative reconstruction and metal artifact reduction algorithms;
MAR ¼ metal artifact reduction algorithms; MBIR ¼ model-based iterative reconstruction; MBIRþMAR ¼ combination of model-based iterative reconstruction
and metal artifact reduction algorithms; U-HRCT ¼ ultra-high-resolution CT

Many patients have metallic dental fillings or implants, which
are highly attenuating objects that often cause metal arti-

facts on CT and thus limit the diagnostic value of these data by
reducing the image quality.1 On CT, these artifacts comprise

areas of low or high density that appear as streaks or radial foci

with variable levels of brightness.2 Metal artifacts can also cause

areas of whiteout, where CT numbers around the metallic object

exceed the maximum CT number range, or blackout, where no

image data are visible. Consequently, several artifact reduction

methods have been developed to improve the quality of images

produced by modern CT systems.
Iterative reconstruction (IR) was initially developed to pre-

serve the quality of a CT image while reducing the level of noise.3

Although iterative reconstruction methods have been available
since 1970, the limited computational power available at that
time meant that this option was not feasible in clinical settings
due to the overly long duration of image reconstruction.
Therefore, a simpler approach (filtered back-projection) was used
because it allowed faster processing and greater feasibility in clini-
cal settings. Iterative reconstruction did not reappear until 2009.4
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Unlike conventional filtered back-projection, which is based on
simpler mathematic assumptions of the tomographic imaging sys-
tem,5 IR is used to generate a set of synthesized projections by
accurately modeling the data-collection process in CT. Hybrid iter-
ative reconstruction (hybrid-IR) approaches apply some noise-
reduction techniques to sinograms and image spaces. Hybrid-IR
provides much better image quality and potentially enables reduc-
tions in radiation doses.6-8 Recently, the evolution of hybrid-IR led
to model-based iterative reconstruction (MBIR). This fully iterative
algorithm minimizes the difference between the measured original
sinogram and the sinogram reproduced by forward projection and
uses a more complex system of prediction models that account for
scanner hardware parameters, the conebeam trajectory, and the
photoelectric trajectory.9,10 Compared with earlier hybrid-IR tech-
niques, MBIR provides superior image resolution at lower radia-
tion doses.11-17 MBIR has also been reported to constitute a useful
approach for metal artifact reduction.18-21

Another approach for the reduction of metal artifacts involves
the use of dedicated metal artifact reduction algorithms (MAR).
With time, researchers have described the remarkable ability of
MAR to enhance the visualization of various target lesions by
reducing metallic artifacts.18,22-29 Therefore, the intended effect
of MAR has been established, and the use of CT with MAR com-
prises the current clinical standard.

Recent advances have made possible the combination of
MBIR and MAR. This study aimed to clarify differences in the
degree of metal artifact reduction and depiction of oral cavity
structures between hybrid-IR and MBIR when both techniques
were combined with MAR and to evaluate the ability of the latter
to improve image quality and diagnostic value.

MATERIALS AND METHODS
This retrospective single-institution study was approved by the
institutional review board of the National Cancer Center Hospital,
Tokyo, Japan. The institutional review board waived the require-
ment for written informed consent from patients due to the design
of the study and the use of anonymized patient records and data.

Patient Characteristics
The inclusion criteria were the diagnosis of oral or oropharyngeal
carcinoma with tumors of.2 cm (longest diameter) and evalua-
tion by contrast-enhanced ultra-high-resolution CT (U-HRCT)
at our hospital between October 2017 and August 2018. The
exclusion criteria were as follows: 1) a history of an oral cavity
operation, 2) a lack of dental fillings or implants, and 3) a lack of
raw CT data required for reconstruction.

For all patients, the age, sex, tumor location, histopathologic
cancer type, and the number and sites of dental fillings or implants
were determined. In cases involving the placement of dental fillings
on multiple adjacent teeth, such as dental bridges, the number of
originally treated teeth was counted. The size of the dental fillings
or implants was not considered because these were #12mm per
tooth and thus equal to or less than the size of the original tooth.

CT
All images were acquired on a U-HRCT scanner (Aquilion
Precision, Canon Medical Systems) in super-high-resolution

mode (1792 channels/detector row, 0.25 � 160 rows; matrix size,
1024). The scanning parameters were a rotation time of 0.5 sec-
onds, pitch factor of 0.569, scanning FOV of 24 cm, and voltage of
120kV. Automatic tube current modulation was used in all exami-
nations, resulting in a mean tube current of 272.4 6 38.2 mA,
mean CT dose index of 14.5 6 1.3 mGy, and mean dose-length
product of 511.9 6 57.4 mGy. A body weight–adapted volume of
iodinated contrast medium (iopromide, Ultravist, 370 mg/mL;
Bayer HealthCare) was administered intravenously at a flow rate of
1.6–2.0 mL/s for 50 seconds. The scan was acquired at a delay of
80 seconds after the commencement of contrast injection.

Axial images of the neck were reconstructed from helical scan
data using the following algorithms: hybrid-IR (Adaptive Iterative
Dose Reduction 3D [AIDR3D]; Canon Medical Systems) and
MBIR (Forward projected model-based Iterative Reconstruction
SoluTion [FIRST]; Canon Medical Systems); then, MAR (Single
Energy Metal Artifact Reduction [SEMAR]; Canon Medical
Systems) was applied to all images. Finally, hybrid-IRþMAR and
MBIRþMARwere performed. A total of 80 image sets (40 patients)
were obtained by reconstruction. AIDR3D reconstructions of areas
of soft tissue were created using the standard reconstruction FC13
kernel. FIRST was reconstructed using a BODY kernel equivalent
to a standard reconstruction kernel. The following parameters were
identical across the reconstruction algorithms: z-axis range, frontal
sinus to cricoid cartilage; section thickness, 3.0mm; section interval,
3.0mm; and reconstruction FOV, 24 cm.

Quantitative Image Analysis
The quantitative image analyses were performed by a board-certi-
fied radiologist (Y.K., with 14 years of experience). Circular ROIs
were placed over the tongue apex in an area containing metal
artifacts (�400 mm2) and over the nuchal muscle at the level of
the hyoid bone in an area without metal artifacts (�100mm2).
The copy-paste function was used to ensure that the sizes and
locations of the ROIs were identical across both reconstruction
algorithms applied to data from a single patient. The mean CT
attenuation value (Hounsfield units) and SD of all ROIs were
measured twice, and the average value of the 2 corresponding
measures was applied.

The SD of the ROI is a widely used measure of noise on radio-
graphic images.30 When used in biologic tissue, the SD represents
a combination of the tissue heterogeneity and noise (which may
also be caused by metal). In a section containing a metal object, the
SD is affected by both the image noise and the metal artifacts.
Calculating the index between the SDs of the muscle (no metal
artifacts) and tongue (metal artifacts) reduces the influence of tis-
sue heterogeneity, though this assumes a consistent level of tissue
heterogeneity. According to previous studies,31,32 the artifact index
(AI) used to quantify the severity of metal artifacts is defined as

AI ¼ SDTONGUEð Þ2 �ðSDMUSCLEÞ2
� �1=2

;

where SDTONGUE and SDMUSCLE denote the SD of the tongue
apex and nuchal muscle, respectively.

The number of reconstructed CT slices was counted, and the
time required per CT section reconstructed by hybrid-IRþMAR
or MBIRþMAR was measured.
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Qualitative Analyses
Three board-certified radiologists (N.U., T.H., and Y.O., with 3, 8,
and 9 years of experience, respectively) performed a qualitative
analysis of the CT images in consensus. All readers were blinded to
the patient demographics and CT parameters and given standar-
dized instructions and training on image sets from 5 patients not
included in this study. The readers used the same monitor
(RadiForce RX440; EIZO), and the study images were presented in
random order on a preset soft-tissue window (window width and
level, 325 and 60 HU, respectively).

The readers evaluated the image-quality scores of metal artifact
reduction and the depictions of representative structures (apex and
base of the tongue, parapharyngeal space, superior portion of the in-
ternal jugular chain, parotid gland) on a 5-point scale (5, no artifacts/
excellent visualization; 4, minimal artifacts/good visualization; 3, mod-
erate metal artifacts/acceptable visualization for diagnosis; 2, severe
metal artifacts in a small area/poor visualization; and 1, severe metal
artifacts in a large area/no visualization), as shown in Fig 1. Finally,
the readers assigned a diagnostic tumor stage according to the criteria
of the American Joint Committee on Cancer, Cancer Staging
Manual, 8th edition33 and examined the correlation between the
qualitative metal artifact reduction score and the number of dental fil-
lings or implants in each patient.

Statistical Analysis
The SPSS Statistics 25 software package
(IBM) was used to perform the statisti-
cal analyses. The paired Student t test
was used to assess quantitative differen-
ces among the CT images recon-
structed using hybrid-IRþMAR and
MBIRþMAR. The Wilcoxon signed
rank test was used to evaluate qualita-
tive differences in image-quality scores
between the 2 reconstruction algo-
rithms. In the qualitative analysis, we
calculated each of the weighted k sta-
tistics for all combinations of the 2
readers to assess the degree of agree-
ment among the 3 readers (ie, interob-
server agreement). k statistics of 0.81–
1.00, 0.61–0.80, 0.41–0.60, 0.21–0.40,
or 0.00–0.20 were interpreted as excel-
lent, substantial, moderate, fair, or poor

agreement, respectively.34 The relationship between the number of
dental fillings or implants and the metal artifact reduction image-
quality score in the qualitative analysis was analyzed by calculating
the Spearman rank correlation coefficient. Specifically, using Excel
2016 (Microsoft), we created an approximation curve by plotting
the mean scores of the 3 readers that corresponded to the number
of dental fillings or implants on a scatter diagram. The level of sta-
tistical significance was set at P, .05.

RESULTS
Patient Characteristics
Figure 2 presents the flow diagram used to determine the
inclusion of potentially eligible patients. Overall, 40 patients
were included. Table 1 presents the additional demographic
and clinical characteristics of the study population. The num-
ber of metallic dental fillings or implants per patient ranged
from 1 to 23 (median, 11). These fillings or implants were
bilateral, right-sided, and left-sided in 37, 2, and 1 patient,
respectively.

Quantitative Analyses
Table 2 presents the findings from quantitative image analyses.
At the apex of the tongue and nuchal muscle, the mean CT

FIG 1. Representative CT images of the degree of metal artifact reduction. The image quality of metal artifact reduction was scored using the
following 5-point scale: 1, severe metal artifacts in a large area; 2, severe metals artifact in a small area; 3, moderate metal artifacts; 4, minimal
metal artifacts; and 5, no metal artifacts.

FIG 2. Flow diagram of the inclusion of potentially eligible patients.
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attenuation value and SD from MBIRþMAR were significantly
lower than those from hybrid-IRþMAR (P, .01). At the apex of
the tongue, hybrid-IRþMAR and MBIRþMAR yielded mean
metal artifact index values of 82.2 (95% CI, 64.2–100.2) and 73.6
(95% CI, 53.0–94.1), respectively, and these values differed signif-
icantly between the 2 algorithms (95% CI, 2.6–14.7; P , .01).
Notably, MBIRþMAR led to a reduction of 11% in the metal arti-
fact index relative to hybrid-IRþMAR (Fig 3).

The median number of CT slices reconstructed was 102
(range, 83–118). The reconstruction times by hybrid-IRþMAR
and MBIRþMAR were 2.1 and 37.6 seconds per section, respec-
tively. In other words, MBIRþMAR required a reconstruction
time.17 times longer than that of hybrid-IRþMAR.

Qualitative Analyses
The weighted k statistic revealed excellent interobserver agree-
ment among the 3 readers (k range, 0.88–0.98). A comparison of
the metal artifact reduction image-quality scores revealed that
MBIRþMAR yielded significant reductions in metal artifacts
compared with hybrid-IRþMAR (P , .01). Figure 4 demon-
strates that MBIRþMAR improved the delineation of the oral
structures and oral cavity cancers by significantly reducing metal
artifacts relative to those produced by hybrid-IRþMAR.

Table 3 presents the image-quality scores of the depicted neck
structures. All representative structures except the apex of the
tongue had a mean score of$3, which was within the identifiable
visual level; the apex of the tongue only had a score of $3 using
MBIRþMAR. Comparisons revealed significant differences in
the average scores obtained using the 2 reconstruction algo-
rithms. MBIRþMAR yielded higher average scores for all repre-
sentative structural depictions compared with hybrid-IRþMAR.

Finally, the approximate power curve indicated a negative
relationship between the number of dental fillings or implants
and the metal artifact reduction image-quality score, regardless of

Table 1: Characteristics of the study population
Variable Value

Age (mean) (yr) 62.9 6 12.3
Sex (male/female) 31:9
Tumor location
Oral tongue 11
Tonsil 11
Floor of mouth 6
Palate 4
Base of tongue 4
Gingiva 3
Buccal mucosa 1

Histopathologic type
Squamous cell carcinoma 32
Malignant lymphoma 3
Clear cell carcinoma 2
Adenocarcinoma 1
Adenosquamous cell carcinoma 1
Mucoepidermoid carcinoma 1

Table 2: Quantitative evaluation of CT attenuation (HU) of the
apex of the tongue and nuchal muscle

Hybrid-
IR1MAR
(Mean)

MBIR1MAR
(Mean)

Difference

95% CI
P

Valuea

Mean of apex of
the tongue
(HU)

103.7 6 52.5 91.9 6 50.6 8.2–15.4 ,.01b

Mean of nuchal
muscle (HU)

64.9 6 6.7 64.0 6 6.7 0.1–1.5 .025b

SD of apex of
the tongue
(HU)

82.9 6 56.0 74.1 6 64.1 2.7–14.8 ,.01b

SD of nuchal
muscle (HU)

8.9 6 1.6 7.5 6 2.0 1.1–1.7 ,.01b

a Paired t test.
b Significant difference.

FIG 3. Boxplot comparison of the artifact index values calculated using
the 2 reconstruction algorithms: hybrid-IRþMAR and MBIRþMAR. The
asterisk indicates a significant difference (P, .01).

FIG 4. Axial CT images of a 32-year-old man with left-tongue can-
cer. Reconstruction was performed using hybrid-IRþMAR (A) and
MBIRþMAR (B). As shown, MBIRþMAR provided superior reduction
of dental artifacts and a better depiction of the tumor (arrows).
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the reconstruction algorithm used. Higher scores were achieved
with MBIRþMAR than with hybrid-IRþMAR (Fig 5). The can-
cer tumor stage diagnoses did not differ significantly with respect
to the type of reconstruction algorithm.

DISCUSSION
This study aimed to compare the CT image quality achieved using
a combination of MBIR and MAR versus that achieved with a
combination of hybrid-IR and MAR in a sample of patients with
oral or oropharyngeal cancer. Our quantitative analysis demon-
strated that MBIRþMAR significantly reduced both the mean CT
attenuation at the apex of the tongue and the metal artifact index
compared with hybrid-IRþMAR. Also, our qualitative analysis
demonstrated that MBIRþMAR yielded a more significant reduc-
tion of metal artifacts in the oral cavity than hybrid-IRþMAR. In
other words, objective and subjective in vivo evaluations revealed
significantly better artifact reduction and image quality with
MBIRþMAR relative to hybrid-IRþMAR.

CT is considered a first-line diagnos-
tic technique for oral cancer because of
its broad availability, capacity for whole-
body tumor staging, and good overall
detection of sensitivity and specificity.35

However, it is essential to achieve an
excellent image quality with minimal
artifacts despite the presence of metal
dental fillings or implants. Prior studies
indicated a superior reduction of dental
artifacts caused by dental hardware or
diverse maxillofacial metal implants
when several MAR algorithms from
major vendors were used, compa-
red with standard reconstruction.24-29

However, MAR algorithms may intro-
duce new artifacts into the image. These
new artifacts can appear as defects or
blurring around metal hardware in the
bone window.26,27 Recently, several clin-
ical studies reported that the combina-
tion of spectral detector CT (or dual-
energy CT) with virtual monoenergetic
images andMAR provided optimal arti-
fact reduction and improved diagnostic
imaging assessments in patients with
dental implants and bridges or metallic
dental prostheses.36,37

As noted previously, the MBIR
algorithm is a revolutionary recon-
struction technology that uses various
models and repeats the subtraction of
original raw data after forward pro-
jection to yield a reconstructed image
that differs minimally from the raw
data. In addition to reducing image
noise, only the MBIR algorithm
reduces streak and beam-hardening

artifacts, respectively.19 In a previous study, MBIR similarly
reduced metal artifacts in the pelvis, spine, oral cavity, and
extremities, which was to a greater extent than filtered back-
projection or hybrid-IR.18-20 Previous reports indicated a better
reduction of metal artifacts when hybrid-IRþMAR was used,
compared with MBIR without MAR.21,38 These results suggest
that both MBIR and MAR can effectively reduce metal artifacts.
Therefore, this in vivo study investigated the usefulness of
MBIRþMAR for reducing metal artifacts in the oral cavity. We
found that compared with hybrid-IRþMAR, MBIRþMAR pro-
vided better representations of normal neck structures and
reduced metal artifacts. We attribute the improved image qual-
ity achieved with MBIRþMAR to the incorporation of MBIR
settings such as the focus size, detector size, and voxel size,
which would improve the spatial resolution. In previous analy-
ses, Wellenberg et al39 and Neroladaki et al40 reported that
MBIRþMAR significantly reduced orthopedic metal artifacts
on pelvic CT images produced by other vendors., Although the
results of those studies were consistent with our findings, the

Table 3: Qualitative evaluation of image-quality scores of representative structures

Representative Structures
Hybrid-IR1MAR

(Mean)
MBIR1MAR

(Mean)
P

Valuea

Apex of the tongue 2.78 6 0.72 3.02 6 0.75 ,.01b

Base of the tongue 4.11 6 0.29 4.27 6 0.41 ,.01b

Parapharyngeal space 4.58 6 0.33 4.68 6 0.27 ,.01b

Superior portion of internal jugular vein 4.77 6 0.24 4.88 6 0.18 ,.01b

Parotid gland 4.50 6 0.40 4.67 6 0.37 ,.01b

aWilcoxon signed rank test.
b Significant difference.

FIG 5. Analysis of the correlation between the image-quality score of artifact reduction and the
number of dental fillings or implants between the 2 reconstruction algorithms: hybrid-IRþMAR
and MBIRþMAR.
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methods differed from ours in that either phantoms or small
numbers of large orthopedic metal implants were used.

A previous phantom study observed that the metal artifacts
increased and the CT image accuracy decreased as the number of
metal implants in the oral cavity increased.41 From in our vivo
study, we also concluded that the metal artifacts worsened as the
number of dental fillings increased. MBIRþMAR was relatively
less affected by an increased number of dental fillings or implants.
Overall, our results demonstrate the specific clinical impact of the
combination of MBIR and MAR, even though the metallic arti-
facts could not be removed completely. Specifically, this in vivo
study revealed a reduction of metal artifacts on CT images of the
neck region when using MBIRþMAR.

Our study had some limitations: First, U-HRCT, which first
became commercially available in 2017, uses smaller detector
elements equivalent to a quarter of the area of the elements in
a conventional CT detector. In a previous report, U-HRCT
with improved spatial resolution was shown to reduce the arti-
facts associated with calcified lesions in coronary arteries.42

Theoretically, U-HRCT with small detector elements would
affect metal artifact reduction by improving the spatial resolu-
tion. In our study, however, all patients were scanned using U-
HRCT; therefore, we could not evaluate the specific reduction
of metal artifacts by U-HRCT. Second, in addition to dental
fillings or implants, metal plates and screws used in postopera-
tive applications are a major cause of image degradation and a
main obstacle to the follow-up of local recurrence in patients
with oral cancer. However, these devices were set as an exclu-
sion criterion in this study. Third, the patient population was
relatively small and derived from a single institution, and the
study design was retrospective. Further studies with much
larger samples are needed to reject null hypotheses with clini-
cally negligible differences.43 Fourth, the inclusion of only
patients with oropharyngeal and oral cancers with solid
tumors of .2 cm might have led to selection bias. Ideally, we
would have included early cancers because these would
be most susceptible to metal artifacts. Finally, although
MBIRþMAR has some advantages over hybrid-IRþMAR, as
demonstrated in our study, it is also disadvantaged by signifi-
cant computational requirements. Consequently, a longer
reconstruction period is required. Future studies should aim to
reduce the reconstitution time and increase the practical appli-
cation of MBIRþMAR.

CONCLUSIONS
The combination of MBIR and MAR enabled the significant reduc-
tion of metal artifacts during oral cavity CT. Moreover, this recon-
struction algorithm improved the depiction of structures in the
neck with a minimal dependence on the number of dental fillings or
implants.
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