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ABSTRACT

BACKGROUND AND PURPOSE: Therapeutic hypothermia represents a promising neuroprotective treatment in acute ischemic
stroke. Selective cerebral hypothermia applied early, prior to and during endovascular mechanical recanalization therapy, may be
beneficial in the critical phase of reperfusion. We aimed to assess the feasibility of a new intracarotid cooling catheter in an animal
model.

MATERIALS AND METHODS: Nine adult sheep were included. Temperature probes were introduced into the frontal and temporal brain
cortices bilaterally. The cooling catheter system was introduced into a common carotid artery. Selective blood cooling was applied for 180
minutes. Systemic and local brain temperatures were measured during cooling and rewarming. Common carotid artery diameters and flow
were measured angiographically and by Doppler sonography.

RESULTS: The common carotid artery diameter was between 6.7 and 7.3 mm. Common carotid artery blood flow velocities increased
moderately during cooling and after catheter removal. Maximum cerebral cooling in the ipsilateral temporal cortex was �4.7°C (95% CI,
�5.1 to �4.0°C). Ipsilateral brain temperatures dropped significantly faster and became lower compared with the contralateral cortex with
maximum temperature difference of �1.3°C (95% CI, �1.5 to �1.0°C; P � .0001) and compared with systemic temperature (�1.4°C; 95% CI,
�1.7 to �1.0°C; P � .0001).

CONCLUSIONS: Sheep proved a feasible animal model for the intracarotid cooling catheter. Fast induction of selective mild hypothermia
was achieved within the cooled cerebral hemisphere, with stable temperature gradients in the contralateral brain and systemic blood.
Further studies are required to demonstrate any therapeutic benefit of selective cerebral cooling in a stroke model.

ABBREVIATIONS: BW � body weight; CCA � common carotid artery; �T � temperature drop; MT � mechanical thrombectomy; TH � therapeutic hypothermia

Therapeutic hypothermia (TH) is an established neuropro-

tective therapy in patients after cardiac arrest1 and in neo-

nates with severe asphyxia.2 Recently, the feasibility and safety

of TH in patients with acute ischemic stroke was proved in

controlled studies,3-6 and 2 multicenter, randomized clinical

trials (EuroHYP-1 and ICTuS 2/3)7,8 are currently underway

to study its efficacy.

Patients with stroke with large-artery occlusions benefit from

endovascular recanalization by mechanical thrombectomy

(MT).9-13 However, reperfusion of ischemic brain tissue may in-

duce additional damage and hemorrhagic transformation, poten-

tially limiting the benefits of recanalization. Current systemic

cooling approaches involve long induction times, so the time win-

dow for TH during the critical reperfusion phase may still be

missed for many patients.14

Recently, we have developed an intracarotid cooling catheter sys-

tem for combined MT and selective TH treatment.15 It simultane-

ously serves as an access for the intracranial MT procedure and en-

ables early cooling of the ischemic penumbra via collaterals before

recanalization, to then provide a “cold reperfusion” of the ischemic

core during and after MT treatment. The latter is expected to be a

critical determinant of clinical outcome.7 Moreover, selective

cooling may reduce systemic adverse events from TH.
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In this study, we aimed to assess the feasibility of the new

cooling catheter in a large animal model with continuous mon-

itoring of systemic and local cortical brain temperatures.

MATERIALS AND METHODS
Balloon Cooling Catheter System
The in vitro development and optimization of the intracarotid

balloon cooling catheter system (Acandis, Pforzheim, Germany)

was previously described.15 In this study, the device and its func-

tional properties were extensively outlined, including photo-

graphic and schematic images of the balloon cooling system. It

consists of 4 serially arranged balloons at the catheter tip (diame-

ter, 4 mm; length, 20 mm each) perfused with coolant (0.9%

sodium chloride) that connect to a closed-loop inner-catheter

cooling circuit without direct blood contact. The latter is kept

constant at �6°C provided by an external thermostat and circu-

lated by a roller pump. A third lumen (diameter, 1 mm) allows

passage of a 2.5F microcatheter and thus distal access for MT.

Animal Studies
Animal experiments with 9 sheep were approved by the local eth-

ics committee (Freiburg, Germany) and performed in accordance

with the German animal protection law and the animal care

guidelines of the European Community (2010/63/EU).

Under general anesthesia (see protocol below), temperature

probes (MP00991; Dräger Medical, Lübeck, Germany) were in-

troduced into the frontal and temporal brain cortices bilaterally

by neurosurgical burr-hole craniotomies. Via transfemoral arte-

rial access, the cooling catheter system was introduced through an

8F 90-cm sheath (Flexor Shuttle Guiding Sheath; Cook, Bloom-

ington, Indiana) into the common carotid artery (CCA) under

systemic heparinization (70 IU/kg body weight [BW]) and fluo-

roscopic guidance. Selective intracarotid blood cooling was ap-

plied by coolant circulation and maintained for 60 minutes in the

first sheep and 180 minutes in the remaining 8 sheep. Cortical

brain, nasal, and systemic (inferior vena cava) temperatures were

measured at 10-second intervals during cooling and 30 minutes

after catheter removal. CCA diameters were measured by Doppler

sonography and DSA before catheter insertion. During cooling

and after catheter removal, the patency and flow of the CCA and

side branches were assessed on DSA at 30-minute intervals. Blood

temperature distal (1, 5, and 10 cm) to the cooling catheter was

measured by using a self-made microprobe at 30-minute inter-

vals. Mean blood-flow velocities were measured in mid-CCA on

Doppler sonography before cooling catheter insertion, during

cooling, and after cooling catheter removal. Positioning of brain

temperature probes was analyzed on postprocedural CT.

Protocol of Animal Anesthesia
Adult sheep (80.2 � 7.4 kg BW) were premedicated with intra-

muscular midazolam (0.5 mg/kg BW) and ketamine hydrochlo-

ride (20 mg/kg BW) and anesthetized intravenously with propo-

fol (2– 4 mg/kg BW). Following endotracheal intubation, 12–15

breaths/min were provided by a volume-controlled ventilator at a

10 –15 mL/kg BW tidal volume, 5-mbar positive end-expiratory

pressure, with setting adjustments to normalize oxygen and car-

bon dioxide tension and pH values. Anesthesia was maintained

intravenously with propofol (15–18 mg/kg BW/h) and fentanyl

(2–3 �g/kg BW/h). Fluid requirements were substituted with

Ringer solution (10 mg/kg BW/h). Electrocardiogram, blood

pressure, and oxygen saturation were monitored continuously. At

the end of the experiment, sheep were sacrificed in deep anesthe-

sia with an intravenous dose of potassium chloride.

Statistical Analysis
Statistical analyses were performed by using SAS 9.2 (SAS Insti-

tute, Cary, North Carolina) for data from 8 sheep with a 3-hour

cooling phase. For each animal and temperature probe, temper-

ature drops (�T � recorded temperature � baseline tempera-

ture) were calculated. Baseline temperatures were defined as

time-averaged temperatures over 20 minutes before initiation of

cooling. Temperature drops were averaged over the cooling phase

and were compared within a linear regression model, accounting

for repeated measurements by using the generalized estimating

equation method for parameter estimation, with an exchangeable

working correlation. The standard generalized estimating equa-

tion methodology provides robust standard error estimates that

are reported here. We compared the cooled hemisphere versus the

noncooled hemisphere (averaged frontal and temporal measure-

ments), the cooled hemisphere versus the inferior vena cava, and

the cooled hemisphere versus the nasal temperature. Mean tem-

perature gradients (95% CI) were calculated between the cooled

hemisphere and the noncooled hemisphere and systemic refer-

ences during cooling and after 30 minutes of rewarming. Times

needed to reach temperature drops of �1°C and �2°C were com-

pared between measurement sites by using the Student t test.

RESULTS
The mean CCA diameters were 7.3 � 1.0 mm proximally and

6.7 � 1.0 mm distally on DSA and 6.3 � 0.6 mm in the midseg-

ment on sonography. Mean CCA blood flow velocity was 36.9 �

8.2 cm/s, 51.9 � 18.7 cm/s, and 55.8 � 13.7 cm/s before cooling

catheter insertion, after the start of cooling, and after balloon

catheter removal, respectively. Mean baseline temperatures var-

ied between 37.0°C � 1.4°C and 37.2°C � 1.7°C (3/9 sheep were

shorn). During selective cooling, temperatures decreased signifi-

cantly more in the cooled brain hemisphere versus the noncooled

brain hemisphere (P � .0001) and versus central venous temper-

ature (P � .0001) (Fig 1). The mean maximum �T was higher

in the temporal cortex with �4.5°C (95% CI, �5.1 to �4.0°C)

than in the frontal cortex with �4.2°C (95% CI, �4.7 to �3.7°C).

The mean maximum systemic venous and nasal �Ts were �3.5°C

(95% CI, �3.9 to �3.2°C) and �4.0°C (95% CI, �4.7 to

�3.4°C), respectively.

The mean maximum temperature gradient among the cooled-

versus-noncooled hemisphere, systemic inferior vena cava, and

nasal temperatures was �1.28°C (95% CI, �1.54 to �1.02°C),

�1.37°C (95% CI, �1.71 to �1.04°C), and �0.79°C (95% CI,

�1.08 to �0.49°C), respectively. After initiation of selective cool-

ing, these temperature gradients increased rapidly to then remain

relatively constant during the remaining cooling period (Fig 2).

Immediately after cooling catheter system removal, the mean in-

terhemispheric and hemispheric-systemic temperature gradients

started to equalize with �0.15°C (95% CI, �0.40 to 0.09°C) and
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�0.21°C (95% CI, �0.46 to 0.05°C), respectively, measured after

30 minutes of rewarming, while the systemic temperatures re-

mained below �3°C to baseline temperature.

The velocity of cooling was initially the highest (pronounced

in the temporal cortex) and then remained relatively constant

during the cooling phase (Table). The times to reach �1°C and

�2°C were significantly shorter in the cooled hemisphere com-

pared with both the noncooled hemisphere (P � .0001) and the

systemic venous temperature (P � .0001) and were marginally

shorter compared with the nasal temperature (P � .48 and P �

.03, respectively). Blood temperature at a 10-cm distance to the cool-

ing catheter tip closely matched the cooled brain temperature during

the later steady-state cooling phase (after �60 minutes, Fig 3).

On DSA, no evidence of CCA flow stagnation/occlusion or

thromboembolic side branch occlusion was present. In 1 case, a su-

perficial temporal branch occlusion related to the temporal craniot-

omy procedure was evident. In another case, the tip of the cooling

catheter was accidentally engaged into a small muscular side branch

of the CCA, resulting in branch occlusion after catheter withdrawal

and major CCA vasospasm, whereas the latter resolved completely

during further controls. In 6/9 sheep (66.7%), mild luminal changes

compatible with vasospasm related to cooling catheter balloons (5/9)

or tip (1/9) were found. Technical problems were the following: 1

temperature probe recording failure and, in 2 cases, short episodic

rewarming (�10 minutes) due to a torqued cooling catheter connec-

tion and shivering from shallow sedation.

FIG 1. Temperature recordings from 9 sheep (mean �T and 95% CI, plotted at 5-minute intervals) that were measured during (0 –180 minutes)
and after (180 –210 minutes) selective intracarotid blood cooling in the frontal and temporal cortical probes of the cooled-versus-noncooled
hemisphere (A) and cooled-versus–central venous temperature (B), respectively.
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CT analysis of brain temperature probes showed optimal po-

sitioning of probes in 22/27 (81.5%); 2/27 (7.4%) were close to the

craniotomy site; and 3/27 (11.1%) were close to midline. None

were dislocated extracranially or crossed the midline.

DISCUSSION
In this in vivo study, we demonstrated the feasibility of selective

cerebral hypothermia by using a newly developed intracarotid

blood-cooling catheter system. The sheep is a suitable large-ani-

mal model with CCA diameters comparable with those of hu-

mans. The selective brain hemispheric temperature drop was

induced significantly faster compared with the noncooled hemi-

sphere and systemic temperature. The target temperature of 35°

for mild TH (assuming a baseline temperature of 37°C) was

achieved within a practical timeframe of 30 – 40 minutes for an

MT procedure. Thus, these results may support the use of this

catheter system in combination with MT for large-vessel occlu-

sions to achieve an enhanced neuroprotective effect during the

reperfusion phase (“cold reperfusion”). The latter concept re-

mains to be proved in humans; however, various preclinical ani-

mal studies have indicated an increased benefit of TH when initi-

ated early during the intra-ischemic period compared with

delayed induction in the postischemic period.16-19 In particular,

selective intracarotid cooling applied in

the reperfusion phase has achieved a

faster and deeper intracortical tempera-

ture reduction and an enhanced neuro-

protective effect in a rat model com-

pared with systemic blood cooling.14,20

Mack et al21 used a similar closed-

loop cooling catheter system (without a

central “working” lumen) for systemic

venous hypothermia (target tempera-

ture of 32°C, maintained for 6 hours)

in a primate surgical large-artery oc-

clusion and reperfusion stroke model.

In their study, cooling was initiated 2

hours after reperfusion (3 hours after

the start of ischemia) without any

demonstrated neurologic benefit.

These negative clinical results may also

support the hypothesis that selective

early TH with the concept of “cold

reperfusion” may be more beneficial

in patients with acute stroke.

Besides selectivity, systemic cooling

due to cold venous return also had an

additive effect on the brain temperature

drop, decreasing the catheter blood inlet

temperature in our series. The lower cooling effect in the frontal-

versus-temporal brain cortex can be attributed to blood mixing

via the anterior communicating artery. The nasal temperature

may only act as an imperfect surrogate of cooled brain tempera-

ture because it was measured in between the cortical brain tem-

peratures of the cooled hemisphere and the systemic temperature,

likely due to a mixture of cooled and noncooled blood supply via

the ipsilateral and contralateral external carotid arteries.

Previous numeric modeling of selective brain cooling demon-

strated the superiority of carotid artery blood cooling over exter-

nal head-cooling devices.22,23 Likewise, intracarotid cold saline

infusion has been proposed for selective brain hypothermia by

mathematic models,24,25 and its effect was investigated on the

jugular venous blood temperature in 18 patients undergoing di-

agnostic cerebral angiography.26 The measured temperature drop

(�0.8°C after 10 minutes of 7°C cold saline infusion at 33 mL/

min) probably underestimates the true brain temperature due to

blood mixing within the jugular venous return. We consider this

technique an interesting alternative method for selective brain

hypothermia and suppose that increasing the inflow rate of the

coolant would increase the cooling performance. However, cold

saline infusion may cause hemodilution and hypervolemia. The

mathematic models cited above showed a decrease of the local

hematocrit from 42% to 30.6% and �20% after 60 minutes and 3

hours of saline infusion with a flow rate of 30 mL/min, respec-

tively. In a randomized study of Kim et al27 in patients with out-

of-hospital cardiac arrest, 2 L of intravenous coolant at 4°C was

given before hospitalization as soon as possible after return of

spontaneous circulation in the hypothermia group. This resulted

in an 11% higher rate of pulmonary edema and lower oxygen

saturation on emergency department arrival. Although patients

FIG 2. Mean temperature gradients (averaged over 8 sheep) among the cooled hemisphere and
the central venous temperature, noncooled hemisphere, and nasal temperature, respectively,
during 180 minutes of cooling and 30 minutes of rewarming (time-averaged at 5-minute intervals).

Velocity of selective brain cooling
Cooled Temporal Cortex

(median time) (range)
(min)

Cooled Frontal Cortex
(median time) (range)

(min)
�1°C 8.5 (3.8–12.5) 11.5 (7.5–14.0)
�2°C 29.4 (11.7–70.3) 40.7 (27.0–70.0)
�3°C 85.7 (59.8–137.6) 100.5 (84.3–140.3)
�4°C 142.1 (109.3–180.0)a 158.3 (148.8–180.0)a

a �4°C was not reached in 2/8 sheep in both temporal and frontal cortices.
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with acute stroke may present with different clinical problems

than those with cardiac arrest and the infusion rate may be kept

lower, hemodilution and hypervolemia should be considered as

possible relevant complications of cold saline infusions.

A recent study examined the induction of selective brain cool-

ing (up to �30°C within 25 minutes) by means of a coaxial cath-

eter system in a focal MCA branch occlusion stroke model in

swine.28 With this approach, the CCA was occluded by an inflated

balloon catheter and isolated from the aorta. Intra-aortic blood

was removed via the outer catheter, cooled, and pumped back

into the CCA via the inner catheter lumen by an extracorporeal

pump. Resultant infarct size (on MR imaging and histology) was

significantly reduced in the hypothermia group. Schwartz et al29

presented a different method of extracorporeal blood cooling in

which the blood was withdrawn from the femoral artery and rep-

erfused into the proximally occluded carotid artery. With this

technique, selective brain hypothermia up to 25°C was induced

with simultaneous maintenance of the systemic temperature at

36°C by warm water blankets and a substantial reduction of in-

farct size was demonstrated in a surgical ICA and anterior cerebral

artery occlusion model with baboons.30 We suppose that the

large-bore catheters that were used in both approaches of endo-

vascular intracarotid blood cooling28,29 are needed for recircula-

tion of the extracorporeally cooled blood and, therefore, are in-

compatible with simultaneous access to MT treatment. Thus,

cooling may only be applied as a stand-alone treatment or delayed

in the postreperfusion phase with these techniques. Hence, the

latter represent major limitations in the context of MT treatment,

which has become the standard of care for patients with acute

large-artery occlusions. Moreover, the required high-dose hepa-

rinization during the 12-hour period of extracorporeal blood

cooling and the artificial pump circulation through a proximally

occluded CCA, potentially leading to detrimental cerebral hyper-

perfusion, may be further disadvantages of such approaches in the

treatment of patients with acute stroke.

Our tested cooling catheter system may potentially overcome

several limitations of other previously proposed approaches for

selective TH: 1) closed-loop coolant circulation that avoids he-

modilution and could allow longer cooling times compared with

intracarotid cold saline infusion; 2) a central catheter lumen en-

abling access for MT of occluded intracranial arteries for patients

with large cerebral artery occlusions, and 3) simultaneous “cold

reperfusion” therapy without affecting cerebral perfusion pres-

sures compared with extracorporeal blood cooling. The optimal

target temperature of TH in acute ischemic stroke is still a matter

of debate, whereas emphasis is put on the time window more than

on the depth of cooling, with neuroprotection being proved at

35°C.7 Otherwise, the variable flow conditions and collateral per-

fusion in patients with stroke with major artery occlusion and the

different times to mechanical recanalization, which are very de-

pendent on anatomy, will influence the temperature at and after

reperfusion and cause a variability of the neuroprotective effect of

the proposed method.

With regard to safety, no critical blood flow impairment or

thromboembolic events were observed. The single dissection of a

muscular side branch of the CCA was a procedural complication,

which is rather unlikely to occur in the human CCA due to ana-

tomic differences (no direct small CCA side branches).

We observed an increase of CCA blood flow velocities after

insertion of the cooling catheter system, which was sustained (by

approximately 50%) after removal of the catheter system. The

former may be explained by a combination of blood flow obstruc-

tion due to the introduction of the catheter system itself and hy-

pothermia, whereas, the latter is likely related directly to a vaso-

dilation effect of the central arteries from hypothermia, which is

in line with a study by Mahmood et al,31 which showed an in-

crease in MCA blood flow velocities in healthy volunteers after

mild externally induced hypothermia (34.5°C). These findings are

also supported by another experimental study demonstrating a

cooling-induced reversible graded vasodilation of the rabbit ca-

FIG 3. Microprobe temperature measurements performed at 30-minute intervals during the cooling phase at predefined distances to the
cooling catheter tip (1, 5, and 10 cm) in comparison with continuously recorded ipsilateral brain cortex and central venous (IVC) temperatures.
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rotid artery.32 By contrast, studies of TH in patients with acute

brain injury from hypoxia after cardiac arrest, severe MCA in-

farct, or severe traumatic brain injury or in patients with poor-

grade subarachnoid hemorrhage and delayed cerebral ischemia

mostly showed a reduction of cerebral blood flow.33-37 However,

under all latter pathologic conditions, a clear distinction between

hypothermia-related and direct pathology-related effects on the

CBF is impossible; this finding relativizes this discrepancy to our

blood flow measurements in cooled but otherwise healthy

animals.

A major limitation of our study was the testing of the cooling

catheter system under physiologic blood flow conditions without

ischemia from a cerebral large-artery occlusion. We have chosen

such a nonischemic large-animal model to determine the in vivo

feasibility and capacity for selective brain hypothermia of the de-

veloped cooling catheter system. For this application, the sheep

model was found ideal because the catheter system may only be

inserted into the carotid arteries of similar anatomic dimensions

to a human CCA. Thereby, the risks and time of the surgical pro-

cedure were limited because the rete mirabile, which is the only

access to the cerebral circulation in sheep, prevents the use of a

clot for generating an MCA occlusion.38,39 Moreover, the vari-

ability of collaterals may affect flow conditions under MCA occlu-

sion among the animals, thus increasing the complexity of the

model and complicating the interpretation of the temperature

development under selective hypothermia. After successful dem-

onstration of selective brain hypothermia, we will test the safety

and efficacy of this technique for neuroprotection in a future sur-

gical model of temporary MCA occlusion on sheep. Thus, our

catheter-based, selective intracarotid cooling technique may also

be compared with a control group undergoing systemic venous

cooling.

CONCLUSIONS
Selective endovascular intracarotid blood cooling during 3 hours

by using a new balloon cooling catheter system was able to achieve

mild hypothermia (��4.5°C) in a sheep model with a faster and

significantly deeper temperature drop in targeted brain hemi-

sphere compared with contralateral brain and systemic tempera-

tures. This selective intracarotid TH approach offers combined

MT access in patients with acute stroke due to large-artery occlu-

sion. Thus, it enables cooling of penumbral tissue as well as “cold

reperfusion” during and after the MT procedure. As a next step,

we will test the efficacy of selective TH in a modified sheep model

of acute ischemic stroke due to middle cerebral artery occlusion.
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